

 [image: PyPI version] [https://badge.fury.io/py/ratelimitqueue] [image: Build Status] [https://travis-ci.com/JohnPaton/ratelimitqueue] [image: Coverage Status] [https://coveralls.io/github/JohnPaton/ratelimitqueue] [image: Documentation Status] [https://ratelimitqueue.readthedocs.io/en/latest/?badge=latest] [image: Code style: black] [https://github.com/ambv/black]

RateLimitQueue

A rate limited wrapper for Python’s thread safe queues.

Some external APIs have rate limits that allow faster-than-consecutive
queries, e.g. if the rate limit is very high or the API response is
quite slow. To make the most of the API, the best option is often to
make API calls from multiple threads. Then you can put the requests or
URLs to call in a queue.Queue and have the threads consume the URLs
as they make the calls. However, you still have to make sure that the
total calls from all your threads don’t exceed the rate limit, which
requires some nontrivial coordination.

The ratelimitqueue package extends the three built-in Python queues
from from queue package - Queue, LifoQueue, and
PriorityQueue - with configurable, rate limited counterparts.
Specifically, the get() method is rate limited across all threads so
that workers can safely consume from the queue in an unlimited loop, and
putting the items in the queue doesn’t need to require blocking the main
thread.

Contents

	RateLimitQueue

	Installation

	Examples

API Documentation

	ratelimitqueue package
	Package Contents

	Submodules
	ratelimitqueue.exceptions module

	ratelimitqueue.ratelimitqueue module

Installation

To install ratelimitqueue, simply install it with
pip:

pip install ratelimitqueue

Examples

The most basic usage is rate limiting calls in the main thread by
pre-loading a RateLimitQueue. For a rate limit of 2 calls per
second:

rlq = ratelimitqueue.RateLimitQueue(calls=2, per=1)

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_api(url)
 rlq.task_done()

A more typical use case would be to have a pool of workers making API
calls in parallel:

rlq = ratelimitqueue.RateLimitQueue(calls=3, per=2)
n_workers = 4

def worker(rlq):
 """Makes API calls on URLs from queue until it is empty."""
 while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_slow_api(url)
 rlq.task_done()

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
with multiprocessing.dummy.Pool(n_workers, worker, (rlq,)) as pool:
 rlq.join()

Working versions of these examples can be found in the in the examples
directory [https://github.com/JohnPaton/ratelimitqueue/tree/master/examples].

ratelimitqueue package

Package Contents

	
class ratelimitqueue.RateLimitQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe queue with a given maximum size and rate limit.

If maxsize is <= 0, the queue size is infinite (see
queue.Queue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately getting the maximum allowed items at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before getting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitQueue()
>>> rlq.put(1)
>>> rlq.put(2)
>>> rlq.get()
1
>>> rlq.get()
2

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
class ratelimitqueue.RateLimitLifoQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe LIFO queue with a given maximum size and rate limit.

If maxsize is <= 0, the queue size is infinite (see
queue.LifoQueue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately filling the whole queue at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before putting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitLifoQueue()
>>> rlq.put(1)
>>> rlq.put(2)
>>> rlq.get()
2
>>> rlq.get()
1

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitLifoQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitLifoQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitLifoQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitLifoQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
class ratelimitqueue.RateLimitPriorityQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe priority queue with a given maximum size and rate
limit.

Prioritized items should be tuples of form (priority, item), with
priority lowest first. Priority determines the order of items
returned by get().

If maxsize is <= 0, the queue size is infinite (see
queue.LifoQueue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately filling the whole queue at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before putting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitPriorityQueue()
>>> rlq.put((2, 'second'))
>>> rlq.put((1, 'first'))
>>> rlq.get()
(1, 'first')
>>> rlq.get()
(2, 'second')

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitPriorityQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitPriorityQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitPriorityQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitPriorityQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

Submodules

ratelimitqueue.exceptions module

	
exception ratelimitqueue.exceptions.RateLimitException[source]

	Bases: Exception

ratelimitqueue.ratelimitqueue module

	
class ratelimitqueue.ratelimitqueue.RateLimitGetMixin[source]

	Adds rate limiting to another class’ get() method.

Assumes that the class being extended has properties calls (int),
per (float), fuzz (float), and _call_log (queue.Queue), else will
raise AttributeError on call of get().

	
get(block=True, timeout=None)[source]

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

ratelimitqueue package

Package Contents

	
class ratelimitqueue.RateLimitQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe queue with a given maximum size and rate limit.

If maxsize is <= 0, the queue size is infinite (see
queue.Queue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately getting the maximum allowed items at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before getting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitQueue()
>>> rlq.put(1)
>>> rlq.put(2)
>>> rlq.get()
1
>>> rlq.get()
2

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
class ratelimitqueue.RateLimitLifoQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe LIFO queue with a given maximum size and rate limit.

If maxsize is <= 0, the queue size is infinite (see
queue.LifoQueue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately filling the whole queue at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before putting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitLifoQueue()
>>> rlq.put(1)
>>> rlq.put(2)
>>> rlq.get()
2
>>> rlq.get()
1

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitLifoQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitLifoQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitLifoQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitLifoQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
class ratelimitqueue.RateLimitPriorityQueue(maxsize=0, calls=1, per=1.0, fuzz=0)[source]

	A thread safe priority queue with a given maximum size and rate
limit.

Prioritized items should be tuples of form (priority, item), with
priority lowest first. Priority determines the order of items
returned by get().

If maxsize is <= 0, the queue size is infinite (see
queue.LifoQueue).

The rate limit is described as calls per time window, with
per measured in seconds. The default rate limit is 1 call per
second. If per is <= 0, the rate limit is infinite.

To avoid immediately filling the whole queue at startup, an
extra randomized wait period can be configured with fuzz.
This will cause the RateLimitQueue to wait between 0 and fuzz
seconds before putting the object in the queue. Fuzzing only
occurs if there is no rate limit waiting to be done.

	Parameters

	
	maxsize (int, optional, default 0) – The number of slots in the queue, <=0 for infinite.

	calls (int, optional, default 1) – The number of call per time unit per. Must be at least 1.

	per (float, optional, default 1.0) – The time window for tracking calls, in seconds, <=0 for
infinite rate limit.

	fuzz (float, options, default 0) – The maximum length (in seconds) of fuzzed extra sleep, <=0
for no fuzzing

Examples

Basic usage:

>>> rlq = RateLimitPriorityQueue()
>>> rlq.put((2, 'second'))
>>> rlq.put((1, 'first'))
>>> rlq.get()
(1, 'first')
>>> rlq.get()
(2, 'second')

A rate limit of 3 calls per 5 seconds:

>>> rlq = RateLimitPriorityQueue(calls=3, per=5)

A queue with the default 1 call per second, with a maximum size
of 3:

>>> rlq = RateLimitPriorityQueue(3)

A queue of infinite size and rate limit, equivalent to
queue.Queue():

>>> rlq = RateLimitPriorityQueue(per=0)

A queue with wait time fuzzing up to 1 second so that the queue
cannot be filled immediately directly after instantiation:

>>> rlq = RateLimitPriorityQueue(fuzz=1)

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

Submodules

ratelimitqueue.exceptions module

	
exception ratelimitqueue.exceptions.RateLimitException[source]

	Bases: Exception

ratelimitqueue.ratelimitqueue module

	
class ratelimitqueue.ratelimitqueue.RateLimitGetMixin[source]

	Adds rate limiting to another class’ get() method.

Assumes that the class being extended has properties calls (int),
per (float), fuzz (float), and _call_log (queue.Queue), else will
raise AttributeError on call of get().

	
get(block=True, timeout=None)[source]

	Get an item from the queue.

If optional args block is True and timeout is None (the default),
block if necessary until a free slot is available and the rate limit
has not been reached. If timeout is a non-negative number, it blocks
at most timeout seconds and raises the RateLimitException if
the required rate limit waiting time is shorter than the given timeout,
or the Empty exception if no item was available within that time.

Otherwise (block is False), get an item on the queue if an item
is immediately available and the rate limit has not been hit. Else
raise the RateLimitException if waiting on the rate limit, or
Empty exception if there is no item available in the queue. Timeout
is ignored in this case.

	Parameters

	
	block (bool, optional, default True) – Whether to block until an item can be gotten from the queue

	timeout (float, optional, default None) – The maximum amount of time to block for

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 ratelimitqueue	

 	
 	
 ratelimitqueue.exceptions	

Index

 E
 | F
 | G
 | J
 | P
 | Q
 | R
 | T

E

 	
 	empty() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

F

 	
 	full() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

G

 	
 	get() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

 	(ratelimitqueue.ratelimitqueue.RateLimitGetMixin method)

 	
 	get_nowait() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

J

 	
 	join() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

P

 	
 	put() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

 	
 	put_nowait() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

Q

 	
 	qsize() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

R

 	
 	RateLimitException

 	RateLimitGetMixin (class in ratelimitqueue.ratelimitqueue)

 	RateLimitLifoQueue (class in ratelimitqueue)

 	
 	RateLimitPriorityQueue (class in ratelimitqueue)

 	RateLimitQueue (class in ratelimitqueue)

 	ratelimitqueue.exceptions (module)

T

 	
 	task_done() (ratelimitqueue.RateLimitLifoQueue method)

 	(ratelimitqueue.RateLimitPriorityQueue method)

 	(ratelimitqueue.RateLimitQueue method)

ratelimitqueue

	ratelimitqueue package
	Package Contents

	Submodules
	ratelimitqueue.exceptions module

	ratelimitqueue.ratelimitqueue module

 [image: PyPI version] [https://badge.fury.io/py/ratelimitqueue] [image: Downloads] [https://pepy.tech/project/ratelimitqueue] [image: Build Status] [https://travis-ci.com/JohnPaton/ratelimitqueue] [image: Coverage Status] [https://coveralls.io/github/JohnPaton/ratelimitqueue]
[image: Documentation Status] [https://ratelimitqueue.readthedocs.io/en/latest/?badge=latest] [image: Code style: black] [https://github.com/ambv/black]

🛑 RateLimitQueue

A rate limited wrapper for Python’s thread safe queues.

Some external APIs have rate limits that allow faster-than-consecutive
queries, e.g. if the rate limit is very high or the API response is
quite slow. To make the most of the API, the best option is often to
make API calls from multiple threads. Then you can put the requests or
URLs to call in a queue.Queue and have the threads consume the URLs
as they make the calls. However, you still have to make sure that the
total calls from all your threads don’t exceed the rate limit, which
requires some nontrivial coordination.

The ratelimitqueue package extends the three built-in Python queues
from from queue package - Queue, LifoQueue, and
PriorityQueue - with configurable, rate limited counterparts.
Specifically, the get() method is rate limited across all threads so
that workers can safely consume from the queue in an unlimited loop, and
putting the items in the queue doesn’t need to require blocking the main
thread.

🔌 Installation

To get started, install ratelimitqueue with pip:

pip install ratelimitqueue

🌟 Examples

The most basic usage is rate limiting calls in the main thread by
pre-loading a RateLimitQueue. For a rate limit of 2 calls per
second:

rlq = ratelimitqueue.RateLimitQueue(calls=2, per=1)

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_api(url)
 rlq.task_done()

A more typical use case would be to have a pool of workers making API
calls in parallel:

rlq = ratelimitqueue.RateLimitQueue(calls=3, per=2)
n_workers = 4

def worker(rlq):
 """Makes API calls on URLs from queue until it is empty."""
 while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_slow_api(url)
 rlq.task_done()

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
with multiprocessing.dummy.Pool(n_workers, worker, (rlq,)) as pool:
 rlq.join()

Working versions of these examples can be found in the examples
directory [https://github.com/JohnPaton/ratelimitqueue/tree/master/examples].

 [image: PyPI version] [https://badge.fury.io/py/ratelimitqueue] [image: Build Status] [https://travis-ci.com/JohnPaton/ratelimitqueue] [image: Coverage Status] [https://coveralls.io/github/JohnPaton/ratelimitqueue] [image: Documentation Status] [https://ratelimitqueue.readthedocs.io/en/latest/?badge=latest] [image: Code style: black] [https://github.com/ambv/black]

RateLimitQueue

A rate limited wrapper for Python’s thread safe queues.

Some external APIs have rate limits that allow faster-than-consecutive
queries, e.g. if the rate limit is very high or the API response is
quite slow. To make the most of the API, the best option is often to
make API calls from multiple threads. Then you can put the requests or
URLs to call in a queue.Queue and have the threads consume the URLs
as they make the calls. However, you still have to make sure that the
total calls from all your threads don’t exceed the rate limit, which
requires some nontrivial coordination.

The ratelimitqueue package extends the three built-in Python queues
from from queue package - Queue, LifoQueue, and
PriorityQueue - with configurable, rate limited counterparts.
Specifically, the get() method is rate limited across all threads so
that workers can safely consume from the queue in an unlimited loop, and
putting the items in the queue doesn’t need to require blocking the main
thread.

Contents

	RateLimitQueue

	Installation

	Examples

API Documentation

	ratelimitqueue package
	Package Contents

	Submodules
	ratelimitqueue.exceptions module

	ratelimitqueue.ratelimitqueue module

Installation

To install ratelimitqueue, simply install it with
pip:

pip install ratelimitqueue

Examples

The most basic usage is rate limiting calls in the main thread by
pre-loading a RateLimitQueue. For a rate limit of 2 calls per
second:

rlq = ratelimitqueue.RateLimitQueue(calls=2, per=1)

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_api(url)
 rlq.task_done()

A more typical use case would be to have a pool of workers making API
calls in parallel:

rlq = ratelimitqueue.RateLimitQueue(calls=3, per=2)
n_workers = 4

def worker(rlq):
 """Makes API calls on URLs from queue until it is empty."""
 while rlq.qsize() > 0:
 url = rlq.get()
 make_call_to_slow_api(url)
 rlq.task_done()

load up the queue
for url in LIST_OF_URLS:
 rlq.put(url)

make the calls
with multiprocessing.dummy.Pool(n_workers, worker, (rlq,)) as pool:
 rlq.join()

Working versions of these examples can be found in the in the examples
directory [https://github.com/JohnPaton/ratelimitqueue/tree/master/examples].

 All modules for which code is available

	queue

	ratelimitqueue.exceptions

	ratelimitqueue.ratelimitqueue

 Source code for queue

'''A multi-producer, multi-consumer queue.'''

import threading
from collections import deque
from heapq import heappush, heappop
from time import monotonic as time
try:
 from _queue import SimpleQueue
except ImportError:
 SimpleQueue = None

__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue', 'SimpleQueue']

try:
 from _queue import Empty
except AttributeError:
 class Empty(Exception):
 'Exception raised by Queue.get(block=0)/get_nowait().'
 pass

class Full(Exception):
 'Exception raised by Queue.put(block=0)/put_nowait().'
 pass

class Queue:
 '''Create a queue object with a given maximum size.

 If maxsize is <= 0, the queue size is infinite.
 '''

 def __init__(self, maxsize=0):
 self.maxsize = maxsize
 self._init(maxsize)

 # mutex must be held whenever the queue is mutating. All methods
 # that acquire mutex must release it before returning. mutex
 # is shared between the three conditions, so acquiring and
 # releasing the conditions also acquires and releases mutex.
 self.mutex = threading.Lock()

 # Notify not_empty whenever an item is added to the queue; a
 # thread waiting to get is notified then.
 self.not_empty = threading.Condition(self.mutex)

 # Notify not_full whenever an item is removed from the queue;
 # a thread waiting to put is notified then.
 self.not_full = threading.Condition(self.mutex)

 # Notify all_tasks_done whenever the number of unfinished tasks
 # drops to zero; thread waiting to join() is notified to resume
 self.all_tasks_done = threading.Condition(self.mutex)
 self.unfinished_tasks = 0

 def task_done(self):
 '''Indicate that a formerly enqueued task is complete.

 Used by Queue consumer threads. For each get() used to fetch a task,
 a subsequent call to task_done() tells the queue that the processing
 on the task is complete.

 If a join() is currently blocking, it will resume when all items
 have been processed (meaning that a task_done() call was received
 for every item that had been put() into the queue).

 Raises a ValueError if called more times than there were items
 placed in the queue.
 '''
 with self.all_tasks_done:
 unfinished = self.unfinished_tasks - 1
 if unfinished <= 0:
 if unfinished < 0:
 raise ValueError('task_done() called too many times')
 self.all_tasks_done.notify_all()
 self.unfinished_tasks = unfinished

 def join(self):
 '''Blocks until all items in the Queue have been gotten and processed.

 The count of unfinished tasks goes up whenever an item is added to the
 queue. The count goes down whenever a consumer thread calls task_done()
 to indicate the item was retrieved and all work on it is complete.

 When the count of unfinished tasks drops to zero, join() unblocks.
 '''
 with self.all_tasks_done:
 while self.unfinished_tasks:
 self.all_tasks_done.wait()

 def qsize(self):
 '''Return the approximate size of the queue (not reliable!).'''
 with self.mutex:
 return self._qsize()

 def empty(self):
 '''Return True if the queue is empty, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() == 0
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can grow before the result of empty() or
 qsize() can be used.

 To create code that needs to wait for all queued tasks to be
 completed, the preferred technique is to use the join() method.
 '''
 with self.mutex:
 return not self._qsize()

 def full(self):
 '''Return True if the queue is full, False otherwise (not reliable!).

 This method is likely to be removed at some point. Use qsize() >= n
 as a direct substitute, but be aware that either approach risks a race
 condition where a queue can shrink before the result of full() or
 qsize() can be used.
 '''
 with self.mutex:
 return 0 < self.maxsize <= self._qsize()

 def put(self, item, block=True, timeout=None):
 '''Put an item into the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until a free slot is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Full exception if no free slot was available within that time.
 Otherwise ('block' is false), put an item on the queue if a free slot
 is immediately available, else raise the Full exception ('timeout'
 is ignored in that case).
 '''
 with self.not_full:
 if self.maxsize > 0:
 if not block:
 if self._qsize() >= self.maxsize:
 raise Full
 elif timeout is None:
 while self._qsize() >= self.maxsize:
 self.not_full.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while self._qsize() >= self.maxsize:
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Full
 self.not_full.wait(remaining)
 self._put(item)
 self.unfinished_tasks += 1
 self.not_empty.notify()

 def get(self, block=True, timeout=None):
 '''Remove and return an item from the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until an item is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Empty exception if no item was available within that time.
 Otherwise ('block' is false), return an item if one is immediately
 available, else raise the Empty exception ('timeout' is ignored
 in that case).
 '''
 with self.not_empty:
 if not block:
 if not self._qsize():
 raise Empty
 elif timeout is None:
 while not self._qsize():
 self.not_empty.wait()
 elif timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 else:
 endtime = time() + timeout
 while not self._qsize():
 remaining = endtime - time()
 if remaining <= 0.0:
 raise Empty
 self.not_empty.wait(remaining)
 item = self._get()
 self.not_full.notify()
 return item

 def put_nowait(self, item):
 '''Put an item into the queue without blocking.

 Only enqueue the item if a free slot is immediately available.
 Otherwise raise the Full exception.
 '''
 return self.put(item, block=False)

 def get_nowait(self):
 '''Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the Empty exception.
 '''
 return self.get(block=False)

 # Override these methods to implement other queue organizations
 # (e.g. stack or priority queue).
 # These will only be called with appropriate locks held

 # Initialize the queue representation
 def _init(self, maxsize):
 self.queue = deque()

 def _qsize(self):
 return len(self.queue)

 # Put a new item in the queue
 def _put(self, item):
 self.queue.append(item)

 # Get an item from the queue
 def _get(self):
 return self.queue.popleft()

class PriorityQueue(Queue):
 '''Variant of Queue that retrieves open entries in priority order (lowest first).

 Entries are typically tuples of the form: (priority number, data).
 '''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 heappush(self.queue, item)

 def _get(self):
 return heappop(self.queue)

class LifoQueue(Queue):
 '''Variant of Queue that retrieves most recently added entries first.'''

 def _init(self, maxsize):
 self.queue = []

 def _qsize(self):
 return len(self.queue)

 def _put(self, item):
 self.queue.append(item)

 def _get(self):
 return self.queue.pop()

class _PySimpleQueue:
 '''Simple, unbounded FIFO queue.

 This pure Python implementation is not reentrant.
 '''
 # Note: while this pure Python version provides fairness
 # (by using a threading.Semaphore which is itself fair, being based
 # on threading.Condition), fairness is not part of the API contract.
 # This allows the C version to use a different implementation.

 def __init__(self):
 self._queue = deque()
 self._count = threading.Semaphore(0)

 def put(self, item, block=True, timeout=None):
 '''Put the item on the queue.

 The optional 'block' and 'timeout' arguments are ignored, as this method
 never blocks. They are provided for compatibility with the Queue class.
 '''
 self._queue.append(item)
 self._count.release()

 def get(self, block=True, timeout=None):
 '''Remove and return an item from the queue.

 If optional args 'block' is true and 'timeout' is None (the default),
 block if necessary until an item is available. If 'timeout' is
 a non-negative number, it blocks at most 'timeout' seconds and raises
 the Empty exception if no item was available within that time.
 Otherwise ('block' is false), return an item if one is immediately
 available, else raise the Empty exception ('timeout' is ignored
 in that case).
 '''
 if timeout is not None and timeout < 0:
 raise ValueError("'timeout' must be a non-negative number")
 if not self._count.acquire(block, timeout):
 raise Empty
 return self._queue.popleft()

 def put_nowait(self, item):
 '''Put an item into the queue without blocking.

 This is exactly equivalent to `put(item)` and is only provided
 for compatibility with the Queue class.
 '''
 return self.put(item, block=False)

 def get_nowait(self):
 '''Remove and return an item from the queue without blocking.

 Only get an item if one is immediately available. Otherwise
 raise the Empty exception.
 '''
 return self.get(block=False)

 def empty(self):
 '''Return True if the queue is empty, False otherwise (not reliable!).'''
 return len(self._queue) == 0

 def qsize(self):
 '''Return the approximate size of the queue (not reliable!).'''
 return len(self._queue)

if SimpleQueue is None:
 SimpleQueue = _PySimpleQueue

 Source code for ratelimitqueue.exceptions

[docs]class RateLimitException(Exception):
 pass

 Source code for ratelimitqueue.ratelimitqueue

import time
import random

import queue
import multiprocessing.dummy as mp

from .exceptions import RateLimitException
from . import utils

[docs]class RateLimitGetMixin:
 """Adds rate limiting to another class' `get()` method.

 Assumes that the class being extended has properties `calls` (int),
 `per` (float), `fuzz` (float), and `_call_log` (queue.Queue), else will
 raise AttributeError on call of get().
 """

[docs] def get(self, block=True, timeout=None):
 """
 Get an item from the queue.

 If optional args `block` is True and `timeout` is None (the default),
 block if necessary until a free slot is available and the rate limit
 has not been reached. If `timeout` is a non-negative number, it blocks
 at most `timeout` seconds and raises the RateLimitException if
 the required rate limit waiting time is shorter than the given timeout,
 or the Empty exception if no item was available within that time.

 Otherwise (`block` is False), get an item on the queue if an item
 is immediately available and the rate limit has not been hit. Else
 raise the RateLimitException if waiting on the rate limit, or
 Empty exception if there is no item available in the queue. Timeout
 is ignored in this case.

 Parameters

 block : bool, optional, default True
 Whether to block until an item can be gotten from the queue

 timeout : float, optional, default None
 The maximum amount of time to block for

 """
 start = time.time()
 if timeout is not None and timeout < 0:
 raise ValueError("`timeout` must be a non-negative number")

 # acquire lock
 self._acquire_or_raise(self._pending_get, block, timeout)

 # make sure child class has the required attributes
 self._check_attributes()

 # get snapshot of properties so no need to lock
 per = self.per
 fuzz = self.fuzz

 if self._call_log.qsize() >= self.calls:
 # get the earliest call in the queue
 first_call = self._call_log.get()

 time_since_call = time.time() - first_call

 if time_since_call < per:
 # sleep long enough that we don't
 # go over the calls per unit time
 if block:
 time_remaining = utils.get_time_remaining(start, timeout)
 sleep_time = per - time_since_call

 # not enough time to complete sleep -> exception
 if (
 time_remaining is not None
 and time_remaining < sleep_time
):
 self._call_log.task_done()
 raise RateLimitException(
 "Not enough time in timeout to wait for next item"
)
 else:
 time.sleep(sleep_time)

 # too fast but not blocking -> exception
 else:
 self._call_log.task_done()
 raise RateLimitException("Too many requests")

 self._call_log.task_done()

 # starting to load up the queue, don't hammer gets with all allowed
 # calls at once
 elif fuzz > 0:
 time_remaining = utils.get_time_remaining(start, timeout)
 fuzz_time = random.uniform(0, fuzz)

 if time_remaining is not None:
 # timeout is set, so leave a bit of leeway from time_remaining
 # to not time out due to fuzzing
 fuzz_time = min(fuzz_time, time_remaining - 0.01)

 time.sleep(fuzz_time)

 # get remaining timeout time for the call to super().get()
 time_remaining = utils.get_time_remaining(start, timeout)

 if time_remaining is not None and time_remaining <= 0:
 raise TimeoutError

 # log the call, release the lock, and return the next item
 self._call_log.put(time.time())
 self._pending_get.release()
 return super().get(block, timeout=time_remaining)

 def _check_attributes(self):
 """Check that calling object has properties calls, per, fuzz,
 _call_log, and get()"""
 if not hasattr(self, "calls"):
 raise AttributeError(
 "RateLimitGetMixin requires the `.calls` property"
)

 if not hasattr(self, "per"):
 raise AttributeError(
 "RateLimitGetMixin requires the `.per` property"
)

 if not hasattr(self, "fuzz"):
 raise AttributeError(
 "RateLimitGetMixin requires the `.fuzz` property"
)

 if not hasattr(self, "_call_log"):
 raise AttributeError(
 "RateLimitGetMixin requires the `._call_log` Queue"
)

 if not hasattr(super(), "get"):
 raise AttributeError(
 "RateLimitGetMixin must be mixed into a base class with"
 " the `.get()` method"
)

 @staticmethod
 def _acquire_or_raise(lock, block=True, timeout=None):
 """Attempt to acquire `lock`, else raise RateLimitException"""
 if block and timeout is not None:
 locked = lock.acquire(block, timeout)
 else:
 locked = lock.acquire(block)

 if not locked:
 raise RateLimitException("Timed out waiting for next item")

[docs]class RateLimitQueue(RateLimitGetMixin, queue.Queue):
 def __init__(self, maxsize=0, calls=1, per=1.0, fuzz=0):
 """
 A thread safe queue with a given maximum size and rate limit.

 If `maxsize` is <= 0, the queue size is infinite (see
 `queue.Queue`).

 The rate limit is described as `calls` `per` time window, with
 `per` measured in seconds. The default rate limit is 1 call per
 second. If `per` is <= 0, the rate limit is infinite.

 To avoid immediately getting the maximum allowed items at startup, an
 extra randomized wait period can be configured with `fuzz`.
 This will cause the RateLimitQueue to wait between 0 and `fuzz`
 seconds before getting the object in the queue. Fuzzing only
 occurs if there is no rate limit waiting to be done.

 Parameters

 maxsize : int, optional, default 0
 The number of slots in the queue, <=0 for infinite.

 calls : int, optional, default 1
 The number of call per time unit `per`. Must be at least 1.

 per : float, optional, default 1.0
 The time window for tracking calls, in seconds, <=0 for
 infinite rate limit.

 fuzz: float, options, default 0
 The maximum length (in seconds) of fuzzed extra sleep, <=0
 for no fuzzing

 Examples

 Basic usage:

 >>> rlq = RateLimitQueue()
 >>> rlq.put(1)
 >>> rlq.put(2)
 >>> rlq.get()
 1
 >>> rlq.get()
 2

 A rate limit of 3 calls per 5 seconds:

 >>> rlq = RateLimitQueue(calls=3, per=5)

 A queue with the default 1 call per second, with a maximum size
 of 3:

 >>> rlq = RateLimitQueue(3)

 A queue of infinite size and rate limit, equivalent to
 queue.Queue():

 >>> rlq = RateLimitQueue(per=0)

 A queue with wait time fuzzing up to 1 second so that the queue
 cannot be filled immediately directly after instantiation:

 >>> rlq = RateLimitQueue(fuzz=1)

 """
 if calls < 1:
 raise ValueError("`calls` must be an integer >= 1")

 super().__init__(maxsize)
 self.calls = int(calls)
 self.per = float(per)
 self.fuzz = float(fuzz)

 self._call_log = queue.Queue(maxsize=self.calls)
 self._pending_get = mp.Lock()

[docs]class RateLimitLifoQueue(RateLimitGetMixin, queue.LifoQueue):
 def __init__(self, maxsize=0, calls=1, per=1.0, fuzz=0):
 """
 A thread safe LIFO queue with a given maximum size and rate limit.

 If `maxsize` is <= 0, the queue size is infinite (see
 `queue.LifoQueue`).

 The rate limit is described as `calls` `per` time window, with
 `per` measured in seconds. The default rate limit is 1 call per
 second. If `per` is <= 0, the rate limit is infinite.

 To avoid immediately filling the whole queue at startup, an
 extra randomized wait period can be configured with `fuzz`.
 This will cause the RateLimitQueue to wait between 0 and `fuzz`
 seconds before putting the object in the queue. Fuzzing only
 occurs if there is no rate limit waiting to be done.

 Parameters

 maxsize : int, optional, default 0
 The number of slots in the queue, <=0 for infinite.

 calls : int, optional, default 1
 The number of call per time unit `per`. Must be at least 1.

 per : float, optional, default 1.0
 The time window for tracking calls, in seconds, <=0 for
 infinite rate limit.

 fuzz: float, options, default 0
 The maximum length (in seconds) of fuzzed extra sleep, <=0
 for no fuzzing

 Examples

 Basic usage:

 >>> rlq = RateLimitLifoQueue()
 >>> rlq.put(1)
 >>> rlq.put(2)
 >>> rlq.get()
 2
 >>> rlq.get()
 1

 A rate limit of 3 calls per 5 seconds:

 >>> rlq = RateLimitLifoQueue(calls=3, per=5)

 A queue with the default 1 call per second, with a maximum size
 of 3:

 >>> rlq = RateLimitLifoQueue(3)

 A queue of infinite size and rate limit, equivalent to
 queue.Queue():

 >>> rlq = RateLimitLifoQueue(per=0)

 A queue with wait time fuzzing up to 1 second so that the queue
 cannot be filled immediately directly after instantiation:

 >>> rlq = RateLimitLifoQueue(fuzz=1)

 """
 if calls < 1:
 raise ValueError("`calls` must be an integer >= 1")

 super().__init__(maxsize)
 self.calls = int(calls)
 self.per = float(per)
 self.fuzz = float(fuzz)

 self._call_log = queue.Queue(maxsize=self.calls)
 self._pending_get = mp.Lock()

[docs]class RateLimitPriorityQueue(RateLimitGetMixin, queue.PriorityQueue):
 def __init__(self, maxsize=0, calls=1, per=1.0, fuzz=0):
 """
 A thread safe priority queue with a given maximum size and rate
 limit.

 Prioritized items should be tuples of form (priority, item), with
 priority lowest first. Priority determines the order of items
 returned by get().

 If `maxsize` is <= 0, the queue size is infinite (see
 `queue.LifoQueue`).

 The rate limit is described as `calls` `per` time window, with
 `per` measured in seconds. The default rate limit is 1 call per
 second. If `per` is <= 0, the rate limit is infinite.

 To avoid immediately filling the whole queue at startup, an
 extra randomized wait period can be configured with `fuzz`.
 This will cause the RateLimitQueue to wait between 0 and `fuzz`
 seconds before putting the object in the queue. Fuzzing only
 occurs if there is no rate limit waiting to be done.

 Parameters

 maxsize : int, optional, default 0
 The number of slots in the queue, <=0 for infinite.

 calls : int, optional, default 1
 The number of call per time unit `per`. Must be at least 1.

 per : float, optional, default 1.0
 The time window for tracking calls, in seconds, <=0 for
 infinite rate limit.

 fuzz: float, options, default 0
 The maximum length (in seconds) of fuzzed extra sleep, <=0
 for no fuzzing

 Examples

 Basic usage:

 >>> rlq = RateLimitPriorityQueue()
 >>> rlq.put((2, 'second'))
 >>> rlq.put((1, 'first'))
 >>> rlq.get()
 (1, 'first')
 >>> rlq.get()
 (2, 'second')

 A rate limit of 3 calls per 5 seconds:

 >>> rlq = RateLimitPriorityQueue(calls=3, per=5)

 A queue with the default 1 call per second, with a maximum size
 of 3:

 >>> rlq = RateLimitPriorityQueue(3)

 A queue of infinite size and rate limit, equivalent to
 queue.Queue():

 >>> rlq = RateLimitPriorityQueue(per=0)

 A queue with wait time fuzzing up to 1 second so that the queue
 cannot be filled immediately directly after instantiation:

 >>> rlq = RateLimitPriorityQueue(fuzz=1)

 """
 if calls < 1:
 raise ValueError("`calls` must be an integer >= 1")

 super().__init__(maxsize)
 self.calls = int(calls)
 self.per = float(per)
 self.fuzz = float(fuzz)

 self._call_log = queue.Queue(maxsize=self.calls)
 self._pending_get = mp.Lock()

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 RateLimitQueue

 		
 ratelimitqueue package

 		
 Package Contents

 		
 Submodules

 		
 ratelimitqueue.exceptions module

 		
 ratelimitqueue.ratelimitqueue module

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

